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LETTER TO THE EDITOR 

Z(2) gauge model on fractal lattices 
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Bombay 400 005, India 

Received 6 February 1981 

Abstract. Hamiltonians with Z ( 2 )  gauge symmetry are studied on a class of fractal lattices. 
The lattices considered here have Fourier and Hausdorf-Besicovitch dimensions strictly 
greater than 2, but they have a low degree of connectivity characterised by their connectivity 
index 2. It is proved that there is no phase transition at non-zero temperatures. 

The study of critical behaviour of Hamiltonians on fractal lattices is interesting per se, 
and may help in the understanding of phase transitions in general. Earlier work in this 
field has been mostly for spin Hamiltonians with global symmetry (the n-vector model, 
or the k-state Potts model) (Nelson and Fisher 1975, Gefen et a1 1980). In this Letter 
we study the behaviour of Hamiltonians with local Z ( 2 )  symmetry on some fractal 
lattices. 

The Z ( 2 )  gauge model in two dimensions (say on a square lattice with simple 
plaquette interactions) is trivial and does not undergo any phase transitions. In order to 
have a non-trivial model, it is necessary to consider larger loop interactions (Gruber et 
a1 1977), or to consider lattices which are somewhat better connected than the square 
lattice. The Z ( 2 )  gauge model on a three-dimensional simple cubic lattice is equivalent 
to the king model on the same lattice, which is a well known unsolved problem. Z ( 2 )  
models on fractal lattices of dimensions between two and three are problems of 
intermediate complexity between these two extremes. 

For the sake of definiteness, let us consider a fractal lattice L, defined as the direct 
product of the linear chain graph (lattice) L1, and a modified rectangular lattice L2. (For 
a definition of the direct product and of the modified rectangular lattice, see Dhar 
(1977).) This lattice may be obtained from a simple cubic lattice by deleting some links 
(bonds). The Hausdorf-Besicovitch dimension of this lattice is three, while its Fourier 
dimension is $. The lattice is invariant with respect to translations along L1 (hereafter 
referred to as the time direction). The elementary loops of this lattice are of two kinds. 
On a constant ‘time’ hypersurface, there are the elementary loops of the modified 
rectangular lattice Lz, these have perimeters 4 ,8 ,16 , .  . . . The other kind of elemen- 
tary loops are of length 4, and include two time-like links (see figure 1). 

We assume an Ising spin S,” taking values z t l ,  at each of the links B of the lattice L. 
Let BI, B2,. . . , B1 be the links constituting an elementary loop p .  We define the 
plaquette variable S% by 

s; = SEISE2 . . . SE,. 
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Figure 1. A portion of the lattice L. The spins (full circles) are situated on the links of the 
lattice. Some of the space-like loops of length 4 and 8 (coupling constantsJ4 and Jg) and two 
of the non-space-like loops (coupling constants K4) are shown. 

The Hamiltonian of the Z ( 2 )  model is defined to be 

H = -C J,S;-C K&. 
P 4 

Here the summation over p extends over all the space-like elementary loops p ,  and the 
summation over q extends over the second kind (non space-like) of elementary loops. Jp 
and Kq are interaction constants. 

The Hamiltonian is clearly unchanged if spins on all the links meeting at any 
particular point are reversed. This is the local symmetry of this model. The duality 
transformation for this lattice is identical to that for a simple cubic lattice (Gruber et a1 
1977, Savit 1980) with unequal plaquette interactions. Just as for the cubic lattice, the 
high-temperature series expansion for the partition function of the Hamiltonian H can 
be shown to be the same as the low-temperature expansion of an Ising Hamiltonian HD, 
defined on a lattice LD, the dual of L. LD is quite easily seen to be the direct product of 
L1 with Lf, the dual lattice of Lz. The sites of the dual lattice LD correspond to 
elementary ‘boxes’ of the original lattice L. Two sites in LD are nearest neighbours, if 
the corresponding boxes in L share a common plaquette. The Hamiltonian HD is of the 
form 

Here Si is the Ising spin at the site i of the dual lattice LD, and the summation extends 
over all nearest-neighbour sites i and j .  Explicit expressions for Kii in terms of Jp and K4 
are easy to write down. 

We now show that a system described by the Hamiltonian HD does not undergo any 
phase transition as a function of temperature, and always exists in the ordered phase. 
We observe that a nearest-neighbour Ising model with spins on the vertices of the lattice 
L2, and arbitrary but bounded nearest-neighbour interactions, is always disordered at 
any non-zero temperature. The duality transformation maps the high-temperature 
phase of this Hamiltonian (say H2)  defintd on L2, to the low-temperature phase of a 
nearest-neighbour Ising Hamiltonian H? defined on L?. This implies that H? defined 
on L? is always in the low-temperature ordered phase, and the corresponding critical 
temperature is infinite. (All the bond strengths on this lattice L? are finite. The critical 
temperature is infinite due to the existence of vertices with arbitrarily large coor- 
dination numbers.) If from the lattice LD we delete all the time-like links, it breaks up 
into mutually non-interacting layers L?, the Hamiltonian of each layer being of the 
form Hf. As the critical temperature can only increase by introducing intra-layer 
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ferromagnetic couplings (Griffiths’ inequality), it is infinite for the Hamiltonian HD 
also, and the corresponding system is always in the ordered phase. Again, by duality it 
follows that the original Hamiltonian H always describes the disordered phase. 

Note that the proof holds for arbitrary non-negative bounded values of the 
interaction constants Jp and Kq. The boundedness constraint can be relaxed somewhat. 
For example, we may take Kq to be unbounded (or strictly infinite) for all plaquettes q 
not sharing any common links with a space-like elementary loop of perimeter 4, without 
affecting the argument. 

It is quite easy to show that in the continuum-time limit, the transfer matrix for the 
Hamiltonian H can be written as the exponential of a quantum mechanical Hamil- 
tonian H Q M  

where HQM is the Hamiltonian for a system of interacting quantum mechanical spins 
defined on the links of the lattice L2. S g  is the spin-flip operator for the spin at link B. 
The hB are interaction constants related to Kq. The non-existence of a phase transition 
for the Hamiltonian H implies that for the Hamiltonian H Q M ,  for arbitrarily small 
transverse fields hB, the ground state is always disordered. 

The proof is easily generalised to other fractal lattices L of the type L = L1 x Lz, 
where L1 is the linear chain graph, and L2 is a planar graph of connectivity index 1. For 
example, Lz may be the (m,  1) recursive lattice (Dhar 1980), or the truncated tetra- 
hedron lattice (Nelson and Fisher 1975). The definition of the connectivity index is 
given in Dhar (1980). For these lattices, the Hausdorf-Besicovitch and the Fourier 
dimensions are strictly greater than 2. However, the connectivity index for these 
lattices is 2. The non-existence of phase transitions in these gauge models would be 
inconsistent with the generally accepted value 2 for the lower critical dimension of 
models with discrete gauge symmetry, if we used the Hausdorf-Besicovitch or Fourier 
definitions of dimension. Clearly, for H Hamiltonians with discrete degrees of 
freedom, for local as well as for global symmetries, the lower critical dimension is best 
defined in terms of the connectivity index. 
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